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Abstract. Based on the Kadanoff–Baym–Keldysh non-equilibrium Green’s function technique,
a quantum transport theory for semiconductor superlattices under high-electric fields is developed.
Both intra-collisional field effects and a collisional broadening are taken into account. The
symmetry of the carrier system in an electric field and an extension of the generalized Kadanoff–
Baym ansatz are discussed. The lifetime broadening of electron–phonon resonances due to
scattering on impurities is calculated. Even if the mean impurity scattering strength is considerably
smaller than the miniband width, the oscillatory current anomalies, which result from intra-
collisional field effects, can be completely smeared out.

1. Introduction

Since the pioneering work by Esaki and Tsu [1], theoretical [2–11] and experimental [12–15]
investigations have revealed many interesting properties of the superlattice (SL) transport such
as negative differential conductivity (NDC) [12], Bloch oscillations [16] the formation of
field domains [17], and even absolute negative current [18] under intense terahertz irradiation.
The narrow wave vector minizone and energy bands of a SL allow electrons, accelerated
perpendicular to the layers, to probe the negative-effective-mass region of the non-parabolic
energy band giving rise to NDC. If the Bloch frequency� = eEd/h̄ (E is the electric
field strength andd the SL period) is larger than some effective scattering rate 1/τ , carriers
confined to the lowest miniband are expected to be Bragg reflected before being scattered by
phonons or imperfections in the crystal. This gives rise to Bloch oscillations, the counterpart
of which is the formation of a Wannier–Stark (WS) ladder in the energy domain. The electric
field induced WS localization results in non-analytic resonant-type anomalies in the current–
voltage characteristic (I–V ) known as electron–phonon resonances. [19] For narrow band
semiconductors, this non-monotonicI–V dependence has been studied both experimentally
[20, 21] and theoretically [19, 22–24] many years ago. The anisotropic band structure of an
artificial SL can be tuned over a wide range to establish optimal conditions for the observation
of such an interesting quantum effect. Recently, Bloch oscillations and WS localization have
been unambiguously identified in electro-optical experiments on SLs (for a review, see [25]).
In contrast, there are no experiments that clearly demonstrate quantum effects in the SL
miniband transport. To resolve this puzzle, it is necessary to develop a quantum transport
theory that allows a study of electron–phonon resonances and includes scattering induced
lifetime broadening to understand why the experimental identification of transport anomalies
seems to be so difficult in a SL.
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Most previous theoretical work was based either on the quasi-classical Boltzmann [2,3] or
balance equations [7,8], which completely neglected quantum WS localization under biasing.
A quantum transport theory that reproduced most other approaches in this field has been
recently proposed [26]. However, the fundamental difficulty of this approach is that inelastic
scattering that dissipates the energy is completely neglected. As a consequence, current
anomalies due to electron–phonon resonances could not be studied. This also refers to an
extensive study [9] of instabilities of the electric field distribution that focused on quasi-
elastic scattering on acoustic phonons. Other quantum mechanical treatments of the SL
transport under strong dc bias without [11,27] and with [28–30] an additional magnetic field
considered the heating of the lateral electron motion and focused on current anomalies, which
result from the WS localization. These anomalies are due to intra-collisional field effects
(ICFEs). [11] However, in all these approaches the lifetime broadening of energetic states
has been taken into account only via a phenomenological broadening parameter. A rigorous
quantum transport theory of SLs that accounts for both a finite collisional broadening and the
quantum WS localization is still absent. It is the aim of this paper to fill this gap by proposing
a non-equilibrium Green’s function theory that is capable of overcoming the above-mentioned
limitations of former approaches.

The paper is organized as follows. In section 2, we introduce our notation and identify
the main symmetry properties of correlation functions. As an application of this general
formulation, we rederive in appendix A a quantum-kinetic equation that has been obtained
many years ago using density matrix techniques [19, 31–33]. Particular emphasis is put on
the symmetry of Green’s functions and its impact on the Kadanoff–Baym (KB) ansatz. The
mutual influence of both the collisional broadening and the WS localization on the SL transport
is treated in section 3. The current density is calculated in section 4, and section 5 summarizes
the main results of our paper.

2. Basic theory and symmetry properties

In this section, we will apply the non-equilibrium Green’s function technique to review basic
theoretical results and to discuss inherent symmetry properties of an electron system in a
constant electric field. This part of our paper does not report completely new results (for an
alternative formulation see, e.g. [33]), but collects all main ingredients that cover the physics
of stationary quantum transport in nanostructures. As an application of this general approach,
we will derive in appendix A a well-established quantum-kinetic equation [19, 31, 32] that
describes ICFEs. We will restrict ourselves to intra-band processes induced by a homogeneous
electric field and assume that the carriers remain essentially within the lowest energy band. A
study of WS localization requires an exact treatment of electric field effects. This is achieved
by including the electric field into the unperturbed partH0 of the total Hamiltonian. Our
calculation is based upon the Kadanoff–Baym–Keldysh non-equilibrium Green’s function
technique, [34, 35] where the symmetry properties of the correlation functions will play an
important role in our calculation. Within the Keldysh formalism, the four double-time Green
functionsG≶,Gc andG̃c (for their definition see [34,36,37]) and the related self-energies6

can be arranged into two by two matrices

Ĝ =
(
Gc −G<

G> −G̃c

)
6̂ =

(
6c −6<

6> −6̃c

)
(1)

the elements of which are not independent from each other, but satisfy the relationships
G< + G> = Gc + G̃c and6< + 6> = 6c + 6̃c. The equations of motion obeyed by
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Green’s functions are given by the Dyson equation, the matrix notation of which is[
ih̄
∂

∂t
−H0(x)

]
Ĝ(x, x ′) = h̄δ4(x − x ′)Î + h̄

∫
dx ′′ 6̂(x, x ′′)Ĝ(x ′′, x ′). (2)

Herex = (r, t) denotes the space and time coordinates andÎ the unit matrix. The time integral
runs over the upper and lower branch of the closed real-time contour [37, 38]. The values of
Green’s functions on the upper and lower time branch are related to each other by the symmetry
property

G≷(x, x ′)∗ = −G≷(x ′, x). (3)

We will consider only weak scattering of carriers on phonons and impurities so that the self-
consistent Born approximation can be used to calculate the self-energy. In this case, the
self-energy components6c and6̃c can be expressed by6≶ via the equations

6c(x, x ′) = 2(t − t ′)6>(x, x ′) +2(t ′ − t)6<(x, x ′) (4)

6̃c(x, x ′) = 2(t ′ − t)6>(x, x ′) +2(t − t ′)6<(x, x ′). (5)

The Dyson equation (2) is written down in the wavenumber representation by taking into
account the definition of the correlation functions along the time contour. We get from
equation (2)[
ih̄
∂

∂t
− ε(k) + ieE∇k

]
G≷(kt |k′t ′) = ±h̄

∫
dk1

{∫ t

t ′
dt16

≷(kt |k1t1)G
≷(k1t1|k′t ′)

+
∫ t ′

−∞
dt16

≷(kt |k1t1)G
≶(k1t1|k′t ′)−

∫ t

−∞
dt16

≶(kt |k1t1)G
≷(k1t1|k′t ′)

}
(6)

whereε(k) is the energy dispersion relation. The Dyson equation (6) simplifies further, when
the symmetries of Green’s functions and self-energies are exploited. For stationary carrier
transport and for the considered scalar potential gauge, Green’s functions depend on two
wavenumber vectors and only on the time difference [39]

G≷(kt |k′t ′) = G≷(k,k′|t ′ − t). (7)

Accordingly, the symmetry relation (3) translates into

G≷(k,k′|t)∗ = −G≷(k′,k| − t). (8)

A further simplification of the Dyson equation (6) relies on a spatial symmetry property of
Green’s functions that comes into play, although the carrier system under the influence of an
external electric field is no longer translationally invariant. Such a symmetry, associated with
the translation operator, reflects the fact that, when an electron moves to a pointr under the
influence of the fieldE, the momentum is restored, if the energy is shifted byeEr. This
symmetry implies (cf equation (17) in [40])

G≷(k,k′|t) = G≷(k, t)δ
(
k′ − k − eE

h̄
t

)
. (9)

The same relationship also applies to the self-energy. The symmetry relation in equation (8)
together with equation (9) becomes particularly transparent for Green’s functions defined by

G̃≷(k, t) ≡ G≷
(
k − eE

2h̄
t, t

)
(10)

for which we get

G̃≷(k, t)∗ = −G̃≷(k,−t). (11)
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The main step in almost all studies of quantum transport is to rewrite the set of Dyson equations
by means of the KB ansatz to obtain a closed equation for the time diagonal distribution
function. This can be achieved by introducing new functionsR≶

G̃≷(k, t) = ∓iG(k, t)R≷(k, t) (12)

with

G(k, t) = exp

[
i

h̄

∫ t/2

−t/2
dτ ε

(
k +

eE

h̄
τ

)]
. (13)

According to equation (11), the functionsR≶ must fulfil the symmetry relation

R≷(k, t) = R≷(k,−t)∗ (14)

and are the solutions of the differential equations(
∂

∂t
± eE

2h̄
∇k
)
R≷(k, t) = 0 (15)

when scattering is completely neglected (cf equation (45) in appendix A). A solution of this
equation that is in accordance with the symmetry relation (14) has the form

R≷(k, t) = f≷
(
k − eE

2h̄
|t |
)

(16)

wheref≶ are unknown functions, which according to the initial condition (cf equation (40)
in appendix A) are related to each other by

f <(k) + f >(k) = 1. (17)

Equations (12) and (16) solve the kinetic equation even in the more general case, when
scattering is taken into account, provided lifetime broadening effects are neglected in the self-
energy expression. These equations, known as the generalized KB ansatz [41,42], have been
used in the literature to study quantum transport in semiconductors. Unlike the conventional
KB ansatz, which has fundamental limitations, this new ansatz is fully consistent with the
dynamical structure of the theory and agrees exactly with results derived from the Liouville
equation for the density matrix [41]. This ansatz takes the causality for the time evolution of
the particle propagator properly into account and follows unambiguously from the symmetry
properties of the electron system in an external electric field. If, however, lifetime broadening
becomes important, the ansatz (16) no longer solves the kinetic equation, and one has to
determine a distribution functionf≷(k−eE|t |/2h̄, t) that depends explicitly on a time variable
even for stationary transport problems. This leads to additional complications, because a closed
equation cannot be derived for the distribution functionf≷(k, 0), which is used to calculate
the current.

3. Treatment of ICFEs and collisional broadening

In this section, we treat high-field transport in SLs under the condition of low carrier
concentration so that field domain formation is suppressed and the carriers approximately
obey the Boltzmann statistics. In this case, the Dyson equation forG≶ simplifies considerably
because one can treatG< by a perturbational method. This allows us to decouple the set of
equations forG< andG> by exploiting an equation of the formG<(k, ω) = −G>(k, ω)f (k),
which holds true for an equilibrium electron system. If lifetime broadening effects become
essential, the eigenenergies of the system are no longer sharp, which implies that the electron
distribution function depends explicitly on a time variable as has been stressed at the end of
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the last section. This explicit time dependence, which expresses the non-Markovian character
of the transport, becomes smooth or nearly disappears when collisional broadening plays a
minor role. For all other cases, the explicit time dependence of the distribution function must
be retained. Therefore, we employ the following ansatz for a non-degenerate electron gas:

G̃<(k, t) = −G̃>(k, t)f

(
k − eE

2h̄
|t |, t

)
(18)

where the distribution functionsf (k, t) and G̃>(k, t) are determined from quite different
equations. First, we will derive an equation for Green’s functionG̃>. This function is calculated
from the Dyson equation (cf equation (39) in appendix A) under the conditionG< → 0. We
obtain[
ih̄
∂

∂t
+ ε

(
k − eE

2h̄
t

)]
G(k, t) = h̄

∫ t

0
dt16

(
k − eE

2h̄
t1, t − t1

)
G(k, t1) (19)

where the following Green’s function and self-energy have been introduced:

G(k, t) = G>

(
k − eE

h̄
t, t

)
6(k, t) = 6>

(
k − eE

h̄
t, t

)
(20)

and where according to equation (40) in appendix A the initial conditionG(k, 0) = −i has to
be fulfilled. This suggests the need to search for a solution of equation (19) in the form

G(k, t) = −i exp

[
i

h̄

∫ t

0
dτ h(k, τ )

]
. (21)

From equations (19) and (21), we get

h(k, t) = ε
(
k − eE

2h̄
t

)
− h̄

∫ t

0
dt16

(
k − eE

2h̄
t1, t − t1

)
exp

[
i

h̄

∫ t1

t

dτ h(k, τ )

]
. (22)

This integral equation allows the calculation of the unknown functionh(k, t), which must
satisfy the symmetry relation

ϕ(k, t) ≡
∫ t

0
dτ h(k, τ ) =

∫ t

0
dτ h

(
k − eE

2h̄
t,−τ

)∗
(23)

as can be seen from its definition. Specific results will be derived for a SL with a simple
tight-binding energy band

ε(k) = ε(k⊥) + ε(kz) = h̄2k2
⊥

2m∗
+
1

2
[1− cos(kzd)] (24)

wherem∗ denotes the effective mass of the lateral electron motion and1 the miniband width.
We will include lifetime effects due to scattering of electrons on impurities and retain only
the first-order correction with respect to scattering in equation (22) (i.e.h(k, τ ) is replaced by
ε(k−eEτ/2h̄)on the right-hand side of equation (22)). The complex self-energy, which enters
equation (22), renormalizes the energy band (this is assumed to be accomplished already in
equation (22)) and leads to a finite lifetime of the electronic states. The collisional broadening
depends on the electric field and is composed of a smooth and a strongly oscillating part. Only
the smooth contribution, which we will calculate within the quasi-classical approximation [11]
(1/h̄� > 1), is expected to determine the main lifetime effects. In the quasi-classical limit,
the scattering induced damping is independent of the electric field. When|t | → ∞, we get
from equations (22), (23), and (43) in appendix A the following impurity mediated lifetime
broadening:

ϕim(k, t) = −s(ε(k⊥))|t | (25)
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where

s(ε(k⊥)) = u2

d

∫
d2k

′
⊥

(2π)2
Re

∫ ∞
0

dt exp

[
i

h̄
(ε(k′⊥)− ε(k⊥))t

]
J 2

0

(
1

2h̄
t

)
. (26)

J0 is the Bessel function. The damping functions(ε(k⊥)) is always positive and depends only
on the lateral wavevectork⊥ via ε(k⊥). Introducing the area density of states by

ρ⊥(ε) =
∫

d2k⊥
(2π)2

δ(ε − ε(k⊥)) = m∗

2πh̄22(ε) (27)

we get from equation (26) the following final result for the energy dependent collision
frequency:

s(ε) = m∗u2

π2h̄1d

∫ ε+1

max(0,ε−1)
dε′K

√1−
(
ε − ε′
1

)2
 (28)

whereK is the complete elliptic integral of the first kind. The next step is the derivation of
a kinetic equation for the distribution functionf , which enters the Dyson equation via the
Green’s functionG̃< in equation (18). The factor̃G>, which enters this equation, too, has just
been calculated. We obtain from equations (20), (21) and (25)

G̃>(k, t) = −i exp

[
i

h̄

∫ t/2

−t/2
dτ ε

(
k − eE

h̄
τ

)
− s(ε(k⊥))|t |

]
. (29)

It remains to derive a kinetic equation forf (k, t). Even for a non-degenerate electron gas, this
results in a complicated integral equation, the explicit form of which is given in appendix B.

Our paper is mainly concerned with the study of electron–phonon resonances in the SL
transport and their damping due to collisional broadening. As shown in section 4, these
resonances survive only when the lifetime broadening is extremely small. In this case,
f (k, t) does not depend explicitly ont , and the kinetic equation simplifies accordingly. From
equation (51) in appendix B together with equations (20), (21), and (25) we get

e

h̄
E∇kf (k) =

∑
k′
W(k,k′)f (k′) (30)

where the field dependent scattering probability is given by

W(k,k′) = 2

h̄2 Re
∫ ∞

0
dt
∑
qλ

|Mqλ|2[(Nqλ + 1)e−iωqλt +Nqλe
iωqλt ]

×
[
P
(
k′ +

q

2
,k − q

2
, q|t

)
− P

(
k′ +

q

2
,k +

q

2
, q|t

)]
(31)

and where we introduced the correlation functions

P(k′,k, q|t) = exp

{
− i

h̄

∫ t

0
dτ

(
ε

(
k′ +

q

2
+
eE

h̄
τ

)
− ε

(
k′ − q

2
+
eE

h̄
τ

))}
×δk′+eEt/h̄,k exp

{
−ts

(
ε
(
k′⊥ +

q⊥
2

))
− ts

(
ε
(
k′⊥ −

q⊥
2

))}
. (32)

Nqλ denotes the Bose–Einstein distribution function for phonons. Equation (30) extends former
theoretical results [11,19,43] by taking into account both ICFEs and finite lifetime effects within
a quantum approach. The collisional broadening is manifest in an energy dependent scattering
time 1/s(ε). The integro-differential equation (30) is solved together with the normalization
condition for the distribution functionf (k).
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4. Calculation of the current density

The calculation of the stationary current density requires the determination of the time
dependent electron distribution functionf (k, t) from the kinetic equation. In the case of weak
lifetime broadening, there is only a weak explicitt dependence of the distribution function.
A broadened Lorentzian energy conservation is obtained, when this weak time dependence
is neglected. This approximation has the defect that higher and higher energy states become
populated because the Lorentz curve falls off only gradually. To avoid this run-away effect,
the explicit time dependence of the distribution function has to be retained. In our present
analytic study, however, we will not address the details of such an analysis, but present some
numerical results that reveal the main features of ICFEs and collisional broadening in the SL
transport.

The current density is calculated from the stationary electron distribution function via

jz = − e

h̄V

∑
k

ε(kz)
∂f (k)

∂kz
(33)

whereV is the volume of the crystal. This equation has been derived by integration by parts
and relates the current directly to the collision integral, when∂f (k, 0)/∂kz is replaced by the
right-hand side of the kinetic equation (30). To simplify the calculation, we will neglect theq

dependence of the electron–phonon coupling and treat dispersionless polar–optical phonons

|Mqλ|2→ ω2
00 (34)

where0 is an averaged coupling constant. In this case all wavenumber integrals can be
calculated analytically. Electron–phonon resonances are predicted to appear at comparatively
high electric fields, when NDC occurs. In the case of high electric fields and weak scattering
(�τ > 1), the distribution functionf (k) can be replaced in a perturbational sense [19] by its
lateral partf (k⊥) =

∑
kz
f (k) on the right-hand side of the kinetic equation (30). This allows

us to express the current density by the lateral distribution functionf (k⊥) and the scattering
probabilityW via equations (30) and (33). From equations (27), (30)–(32) and (33) we get

jz = 2ω2
00

h̄2Ed2

(
m∗

2πh̄2

)2

Re
∫ ∞

0
dε dε′ f (ε′)

∫ ∞
0

dt e−ts(ε)−ts(ε
′)+it (ε′−ε)/h̄

×[(N0 + 1)e−iω0t +N0eiω0t ]
d

2π

∫ 2π/d

0
dqz H(qz, t) (35)

where the functionH(qz, t), which introduces ICFEs and the Stark ladder, is calculated
from [44]

H(qz, t) = d

2π

∫ 2π/d

0
dkz

[
ε
(
kz − qz

2

)
− ε

(
kz +

qz

2

)]
× exp

{
− i

h̄

∫ t

0
dτ

[
ε

(
kz +

qz

2
− eE

h̄
τ

)
− ε

(
kz − qz

2
− eE

h̄
τ

)]}
=

∞∑
l=−∞

eil�t lh̄�J 2
l

(
1

h̄�
sin

qzd

2

)
. (36)

In this equation,Jl denotes the Bessel function of integer orderl. In our study of electron–
phonon resonances, we will not take into account the heating of the lateral electron motion
by the electric field, i.e. we replace the functionf (ε) in equation (35) by the Boltzmann
distribution (∼ exp(−ε/kBT )). This approximation allows us to grasp the main physics
of the high-field SL transport. However, quantitative details can be derived only, when the
quantum-kinetic equation is solved for the distribution function.
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InsertingH(qz, t) from equation (36) into equation (35) and calculating thet integral, we
obtain for the current density of a non-degenerate electron gas

jz = em∗nsω2
00

2πh̄4kBT d

1

1− e−β

∞∑
l=−∞

lFl

(
1

h̄�

)∫ ∞
0

dε dε′ e−ε
′/kBT

×
[

s(ε) + s(ε′)
(l� + (ε′ − ε)/h̄− ω0)2 + (s(ε) + s(ε′))2

+e−β
s(ε) + s(ε′)

(l� + (ε′ − ε)/h̄ + ω0)2 + (s(ε) + s(ε′))2

]
(37)

where

Fl

(
1

h̄�

)
= 1

π

∫ π

0
dz J 2

l

(
1

h̄�
sinz

)
. (38)

We used the abbreviationβ = h̄ω0/kBT . It is seen from equation (37) that current maxima
are expected to appear at electron–phonon resonance positions determined froml�±ω0 = 0.
These resonances are broadened by the energy dependent scattering time 1/s(ε). Former
approaches [28, 30, 43] that treated collisional broadening on a phenomenological level
introduced a constant scattering time parameter (s(ε) + s(ε′)→ s).

Numerical results calculated from equations (28) and (37) are shown in figures 1(a)
and (b) for 1/h̄ω0 = 1 and 0.5, respectively. The field independent reference current
density isjz0 = em∗nsω2

00/2πh̄
3d. As our restriction to the zeros Fourier component of

the distribution function in the collision integral (f (k)→ f (k⊥) =
∑

kz
f (k)) is valid only

at high electric field strengths beyond the Ohmic regime, we calculated the current density
only above 5 kV cm−1. Vertical lines in figures 1(a) and (b) mark the positions of electron–
phonon resonances atE = h̄ω0/led with l = 1, 2, 3 (for d we used 10 nm). The solid curves
have been calculated for the case, when the impurity scattering strength is much smaller than
the miniband width (m∗u2/π21d = 0.005). In this case weak current oscillations appear,
which, however, are rapidly smeared out, when the impurity strength becomes slightly larger.
This is shown by the dashed curves, which have been calculated form∗u2/π21d = 0.05.
The lifetime broadening effect calculated from the microscopic model seems to be larger
than phenomenological estimates suggest. This is due to the fact that in equation (37) both
energy integrals are affected by the damping functions(ε). Another interesting result of our
calculation is that the current density increases with increasing lifetime broadening below a
field strength of about 30 kV cm−1. This enhancement of the current is due to the fact that
the WS localized electronic states become more and more delocalized, when the collisional
broadening increases. Only at very high electric field strengths, when the electrons are strongly
localized along the field direction, this effect is not that important.

Our calculation demonstrates that quantum effects in the SL miniband transport can appear
only when the collisional broadening is drastically reduced. We believe that this is the reason
why electron–phonon resonances have not been reported in experiments on SLs until now.

5. Summary

In summary, we have developed a quantum transport theory for semiconductor SLs under
high electric fields. Particular attention has been paid to the symmetry properties of Green’s
functions. We stressed the known fact (see, e.g. [33]) that only the generalized KB ansatz is
compatible with the symmetry of the electron system in an electric field. A proper treatment of
collisional broadening requires us, however, to extend the generalized KB ansatz by introducing
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Figure 1. (a) Field dependence of the dimensionless current densityjz/jz0 with jz0 =
em∗nsω20/2πh̄3d for 1/h̄ω0 = 1 and h̄ω0/kBT = 5 calculated from equations (49), (50)
and (40). The scattering strength parameterm∗u2/π21d is given by 0.005 and 0.05 for the solid
and dashed line, respectively. (b) The same as in (a) for 1/h̄ω0 = 0.5.

a distribution function, which depends explicitly on a time variable, even for stationary transport
problems.

We treated ICFEs and collisional broadening in an approximate manner to study current
anomalies in the SL miniband transport associated with electron–phonon resonances that result
from WS localization and their dependence on lifetime broadening. As an example, we treated
collisional broadening due to elastic scattering on impurities and obtained the result that under
the condition of high field transport the smooth part of the scattering time depends on the energy
of the lateral electron motion. Our numerical results demonstrate that current oscillations,
which are due to ICFEs, occur only when the lifetime broadening is extremely small. This
might be the reason why quantum mechanical current oscillations have not been reported in
high-field transport measurements in SLs up to now.

One interesting extension of our approach would be the study of Zener tunnelling within
a multiple sub-band SL model. Recently, very exciting experimental results have been
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published [47] in this field. One technical, but not fundamental difficulty in such a theory
is the calculation of off-diagonal elements of the density matrix with respect to the band index.

Finally, we hope that our quantum-mechanical approach, which accounts for both
ICFEs and collision broadening, can be also used to study the stationary transport in other
nanostructure devices.
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Appendix A

In this appendix the symmetry properties discussed in section 2 are exploited to derive a kinetic
equation that plays a central role in the treatment of quantum transport.

Our starting point is the Dyson equation (6), in which equations (7) and (9) are inserted
andt ′ − t is replaced byt . We get[
−ih̄

∂

∂t
− ε(k) + ieE∇k

]
G≷(k, t) = ±h̄

{
−
∫ t

0
dt16

≷(k, t1)G≷
(
k +

eE

h̄
t1, t − t1

)
+
∫ ∞

0
dt16

≷(k, t − t1)G≶
(
k +

eE

h̄
(t − t1), t1

)
−
∫ 0

−∞
dt16

≶(k, t1)G≷
(
k +

eE

h̄
t1, t − t1

)}
(39)

where the initial condition

G>(k, 0)−G<(k, 0) = −i (40)

must be fulfilled. According to equation (8), the solution of this integro-differential equation
has to satisfy the symmetry relation

G≷(k, t)∗ = −G≷
(
k +

eE

h̄
t,−t

)
. (41)

We will treat scattering within the self-consistent Born approximation, where the self-energy
is calculated from

6≷(k, t) = i
∫

dk′

(2π)3
D≷(k − k′, t)G≷(k′, t). (42)

For scattering on impurities the Born approximation yields

6
≷
im(k, t) = u2

∫
dk′

(2π)3
G≷(k′, t) (43)

where u2 is the strength of the impurity potential. For simplicity we will restrict our
consideration of the electron–phonon interaction to the bulk phonon model. In this case
the self-energy is given by [33,34]

6
≷
ph(k, t) =

2π

h̄2

∑
qλ

|Mqλ|2
sinh(h̄ωqλ/2kBT )

cosωqλ

(
t ∓ ih̄

2kBT

)
G≷(k + q, t) (44)

whereωqλ is the phonon frequency of wavevectorq in branchλ andMqλ the screened electron–
phonon coupling matrix element. In equation (44),T is the temperature andkB the Boltzmann
constant. The Dyson equation (39) together with equation (43) or (44) form a closed system
of two coupled equations, from whichG< andG> can be calculated.
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Now we will derive a kinetic equation for Green’s functioñG≷(k, t) defined in
equation (10). Such an equation results from the difference of Dyson equations written down
for G̃≷(k, t) andG̃≷(k,−t)∗, respectively. After elementary calculations we arrive at the
following non-Markovian integral equations for the correlation functions[
ε

(
k +

eE

2h̄
t

)
− ε

(
k − eE

2h̄
t

)
+ ieE∇k

]
G̃≷(k, t)

= ± h̄
{
−
∫ t

0
dt1

[
6̃≷

(
k − eE

2h̄
(t − t1), t1

)
G̃≷

(
k +

eE

2h̄
t1, t − t1

)
−6̃≷

(
k +

eE

2h̄
(t − t1), t1

)
G̃≷

(
k − eE

2h̄
t1, t − t1

)]
+
∫ ∞

0
dt1

[
6̃≷

(
k − eE

2h̄
t1, t − t1

)
G̃≶

(
k +

eE

2h̄
(t − t1), t1

)
−6̃≶

(
k +

eE

2h̄
(t − t1), t1

)
G̃≷

(
k − eE

2h̄
t1, t − t1

)]
−
∫ 0

−∞
dt1

[
6̃≶

(
k − eE

2h̄
(t − t1), t1

)
G̃≷

(
k +

eE

2h̄
t1, t − t1

)
−6̃≷

(
k +

eE

2h̄
t1, t − t1

)
G̃≶

(
k − eE

2h̄
(t − t1), t1

)]}
. (45)

In the stationary case, the current density is calculated from Green’s functionG̃<(k, 0) that
satisfies the equation

ieE∇kG̃≷(k, 0) = ∓2h̄Re
∫ ∞

0
dt1

{
6̃≷

(
k − eE

2h̄
t1, t1

)∗
G̃≶

(
k − eE

2h̄
t1, t1

)
−6̃≶

(
k − eE

2h̄
t1, t1

)∗
G̃≷

(
k − eE

2h̄
t1, t1

)}
(46)

which is not a closed one for̃G<(k, 0). If the influence of the electric field on scattering (ICFE)
is taken into account, but collisional broadening is neglected, a closed kinetic equation for the
distribution function is obtained by making use of the generalized KB ansatz (equations (12)
and (16)). Inserting this ansatz into equation (46), we get

eE∇kf≷(k) = ∓2h̄Re i
∫ ∞

0
dt g(k, t)

{
6̃≷

(
k − eE

2h̄
t, t

)∗
f≶

(
k − eE

h̄
t

)
+6̃≶

(
k − eE

2h̄
t, t

)∗
f≷

(
k − eE

h̄
t

)}
(47)

where

g(k, t) = exp

[
i

h̄

∫ t

0
dτ ε

(
k − eE

h̄
τ

)]
. (48)

If scattering on polar optical phonons is the main inelastic scattering mechanism, it is the
self-energy expression (44) that has to be used in equation (47). Putting everything together,
we obtain a closed kinetic equation for the electron distribution functionf (k) ≡ f <(k)

eE∇kf (k) = 2

h̄
Re

∑
qλ

|Mqλ|2
sinh(h̄ωqλ/2kBT )

×
∫ ∞

0
dt exp

{
i

h̄

∫ t

0
dτ

[
ε

(
k − eE

h̄
τ

)
− ε

(
k + q − eE

h̄
τ

)]}
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×
{

cosωqλ

(
t − ih̄

2kBT

)
f

(
k + q − eE

h̄
t

)(
1− f (k − eE

h̄
t)

)
− cosωqλ

(
t +

ih̄

2kBT

)
f

(
k − eE

h̄
t

)(
1− f

(
k + q − eE

h̄
t

))}
. (49)

This quantum-kinetic equation applies to Fermions and reproduces exactly an equation, which
is sometimes called the Barker–Ferry equation [19, 31–33, 45]. In the Boltzmann limit
(1−f → 1), the known one-electron result is obtained, which has been derived and discussed
many years ago [19, 22, 31, 32, 43, 45]. The kinetic equation (49) has been used [11, 46] to
study miniband transport in SLs.

Appendix B

A kinetic equation for the distribution functionf (k, t) is obtained from equations (44), and
(45) together with (18). Taking into account that for a non-degenerate electron gasG< → 0,
we get

−G̃>(k, t)eE∇kf
(
k − eE

2h̄
|t |
)
= 2

h̄
Re

∑
qλ

|Mqλ|2
sinh(h̄ωqλ/2kBT )

×
{∫ ∞

0
dt1

[
cosωqλ

(
t − t1 +

ih̄

2kBT

)
G̃<

(
k + q − eE

h̄
t1, t − t1

)
×G̃>

(
k +

eE

h̄
(t − t1), t1

)
− cosωqλ

(
t1− ih̄

2kBT

)
G̃>

(
k + q +

eE

h̄
(t − t1), t1

)
×G̃<

(
k − eE

h̄
t1, t − t1

)]
−
∫ 0

−∞
dt1

[
cosωqλ

(
t1− ih̄

2kBT

)
G̃>

(
k + q − eE

h̄
(t − t1), t1

)
×G̃<

(
k +

eE

h̄
t1, t − t1

)
− cosωqλ

(
t − t1 +

ih̄

2kBT

)
G̃<

(
k + q +

eE

h̄
t1, t − t1

)
×G̃>

(
k − eE

h̄
(t − t1), t1

)]}
. (50)

f (k, t) enters the right-hand side of this equation via equation (18).
If the collisional broadening is small, the distribution functionf (k, t) is effectively

independent oft , and we get from equation (50) fort = 0

eE∇kf (k) = 2

h̄
Re

∑
qλ

|Mqλ|2
sinh(h̄ωqλ/2kBT )

∫ ∞
0

dt G̃>

(
k + q − eE

2h̄
t, t

)∗
G̃>

(
k − eE

2h̄
t, t

)
×
{

cosωqλ

(
t − ih̄

2kBT

)
f (k + q − eEt/h̄)

− cosωqλ

(
t +

ih̄

2kBT

)
f (k − eEt/h̄)

}
. (51)
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